

## Cluster Analysis

using Latent Categorical Analysis and Factor Mixture Analysis



Today's goal:

Teach how to do cluster analysis in Mplus

Outline:

- Explain the idea behind cluster analysis
- Latent Categorical Analysis (LCA)
- Factor Mixture Analysis (FMA)



## Cluster Analysis Why do it?



Putting people into distinct groups...

- ...based on how they answer certain questions
- ...based on behavioral patterns
- ...etc

Two versions:

Based on "raw data": Latent Categorical Analysis Based on factors: Factor Mixture Analysis



# Dataset

| ID | ltems                             |
|----|-----------------------------------|
| 1  | Wall                              |
| 2  | Status updates                    |
| 3  | Shared links                      |
| 4  | Notes                             |
| 5  | Photos                            |
| 6  | Hometown                          |
| 7  | Location (city)                   |
| 8  | Location (state/province)         |
| 9  | Residence (street address)        |
| 10 | Employer                          |
| 11 | Phone number                      |
| 12 | Email address                     |
| 13 | Religious views                   |
| 14 | Interests (favorite movies, etc.) |
| 15 | Facebook groups                   |
| 16 | Friend list                       |



Information disclosure behavior research: two approaches

1. Each item is a separate decision

- No assumptions about correlations
- No overall measure of disclosure tendency
- No explanation of how behaviors come about
- No suggestion how they can be influenced

Verdict: not very useful



Information disclosure behavior research: two approaches

- 2. Aggregate of decisions is a single scale
  - Sums individual disclosures to get a "score"
  - Enables researchers to find antecedents
  - Implicit assumption of unidimensionality
  - Implicit assumption of exchangeability

Verdict: might oversimplify the structure of the behavior

![](_page_7_Picture_0.jpeg)

Disclosures are correlated:

![](_page_7_Picture_2.jpeg)

![](_page_8_Picture_0.jpeg)

Disclosures are unidimensional:

![](_page_8_Figure_2.jpeg)

![](_page_9_Picture_0.jpeg)

![](_page_9_Figure_1.jpeg)

![](_page_10_Picture_0.jpeg)

Disclosures are multidimensional:

![](_page_10_Figure_2.jpeg)

![](_page_11_Picture_0.jpeg)

Disclosures are multidimensional:

![](_page_11_Figure_2.jpeg)

![](_page_12_Picture_0.jpeg)

People can be classified on these dimensions:

![](_page_12_Figure_2.jpeg)

![](_page_13_Picture_0.jpeg)

People can be classified on these dimensions:

![](_page_13_Figure_2.jpeg)

![](_page_14_Picture_0.jpeg)

Information disclosure behaviors are multidimensional

- Different people have different tendencies to disclose different types of information
- Not one "disclosure tendency", but several!

There exist distinct groups of people with different "disclosure profiles"

E.g., one group does not disclose location items, while another group does not disclose opinion items

![](_page_15_Picture_0.jpeg)

Privacy groups, that sounds familiar...

Privacy fundamentalists, pragmatists, and unconcerned (Westin et al., 1981; Harris et al., 2003)

Ours is different:

- Based on behavior rather than attitudes
- Not just a difference in degree, but a difference in kind

![](_page_16_Picture_0.jpeg)

## Procedure

| ID | Items                             |
|----|-----------------------------------|
| 1  | Wall                              |
| 2  | Status updates                    |
| 3  | Shared links                      |
| 4  | Notes                             |
| 5  | Photos                            |
| 6  | Hometown                          |
| 7  | Location (city)                   |
| 8  | Location (state/province)         |
| 9  | Residence (street address)        |
| 10 | Employer                          |
| 11 | Phone number                      |
| 12 | Email address                     |
| 13 | Religious views                   |
| 14 | Interests (favorite movies, etc.) |
| 15 | Facebook groups                   |
| 16 | Friend list                       |

![](_page_17_Picture_0.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Picture_0.jpeg)

|            | Factor1 | Factor2 | Factor3 | Factor4 |
|------------|---------|---------|---------|---------|
| cwall      | 0.810   |         |         |         |
| cstatus    | 0.942   |         |         |         |
| clinks     | 0.776   |         | 0.146   |         |
| cnotes     | 0.790   |         |         | 0.125   |
| cphoto     | 0.569   | 0.209   |         | 0.140   |
| ctown      | 0.145   | 0.698   | 0.116   |         |
| cloccity   |         | 0.976   |         |         |
| clocstate  |         | 0.960   |         |         |
| clocadress |         | 0.111   | -0.105  | 0.746   |
| cemployer  | -0.156  | 0.311   | 0.297   | 0.403   |
| cphone     |         |         |         | 0.934   |
| cemail     |         |         | 0.211   | 0.648   |
| creligious |         |         | 0.810   |         |
| cinterest  |         |         | 0.858   |         |
| cgroups    | 0.138   |         | 0.755   |         |
| cfriends   | 0.306   | 0.112   | 0.462   |         |

# Final factors (CFA)

| Type of data      | ID | ltems                             |  |  |
|-------------------|----|-----------------------------------|--|--|
|                   | 1  | Wall                              |  |  |
|                   | 2  | Status updates                    |  |  |
| Facebook activity | 3  | Shared links                      |  |  |
|                   | 4  | Notes                             |  |  |
|                   | 5  | Photos                            |  |  |
|                   | 6  | Hometown                          |  |  |
| Location          | 7  | Location (city)                   |  |  |
|                   | 8  | Location (state/province)         |  |  |
|                   | 9  | Residence (street address)        |  |  |
| Contact info      | 11 | Phone number                      |  |  |
|                   | 12 | Email address                     |  |  |
|                   | 13 | Religious views                   |  |  |
| Life/interests    | 14 | Interests (favorite movies, etc.) |  |  |
|                   | 15 | Facebook groups                   |  |  |

![](_page_21_Picture_0.jpeg)

## Factor Mixture Analysis!

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_0.jpeg)

## **Factor Mixture Analysis!**

![](_page_22_Figure_2.jpeg)

## Latent Categorical Analysis!

![](_page_23_Picture_0.jpeg)

**LCA: cluster people on the value of the items** Does not assume a latent factor structure

**FMA: cluster people on the value of the factors** Assumes a latent factor structure

Sometimes they show essentially the same result But not always!

![](_page_24_Picture_0.jpeg)

How to conduct Latent Categorical Analysis

![](_page_25_Picture_0.jpeg)

## Under VARIABLE:

Specify the number of classes: classes = c(2)

## Under ANALYSIS:

Specify mixture model: type = mixture

Optionally, specify iterations etc

![](_page_26_Picture_0.jpeg)

```
DATA: file = fdatam.csv;
```

```
variable:
    names are
        cwall cstatus clinks cnotes cphoto ctown
        cloccity clocstate clocadress cemployer
        cphone cemail creligious
        cinterest cgroups cfriends
    ;
    usev are
        cwall cstatus clinks cnotes cphoto ctown
        cloccity clocstate clocadress
        cphone cemail creligious
        cinterest cgroups
    ;
    classes = c(2);
analysis:
    type = mixture;
```

![](_page_27_Picture_0.jpeg)

Model is going to run with two random clusters

Algorithm adjusts values to create maximum separation between clusters

10 initial iterations, plus 4 final optimization steps

Once done, the model restarts with two new random clusters 20 random starts

The best results are reported

![](_page_28_Picture_0.jpeg)

RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:

| -9310.519 | 637345 | 19 |
|-----------|--------|----|
| -9310.519 | 573096 | 20 |
| -9310.519 | 285380 | 1  |
| -9310.519 | 195873 | 6  |

THE BEST LOGLIKELIHOOD VALUE HAS BEEN REPLICATED. RERUN WITH AT LEAST TWICE THE RANDOM STARTS TO CHECK THAT THE BEST LOGLIKELIHOOD IS STILL OBTAINED AND REPLICATED.

![](_page_29_Picture_0.jpeg)

Is the final result we found the best possible result? It was replicated in 4/20 random starts

Let's run with 200 starts, and check again!

Also, let's increase the number of initial iterations to 20, and the number of final optimizations to 10

Code:

starts = 200 10;

sitter = 20;

![](_page_30_Picture_0.jpeg)

RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:

| -9310.519 | 417035 | 149 |
|-----------|--------|-----|
| -9310.519 | 754100 | 56  |
| -9310.519 | 496881 | 192 |
| -9310.519 | 407168 | 44  |
| -9310.519 | 475420 | 71  |
| -9310.519 | 950604 | 172 |
| -9310.519 | 963053 | 43  |
| -9310.519 | 207896 | 25  |
| -9310.519 | 830392 | 35  |
| -9310.519 | 846194 | 93  |

THE BEST LOGLIKELIHOOD VALUE HAS BEEN REPLICATED. RERUN WITH AT LEAST TWICE THE RANDOM STARTS TO CHECK THAT THE BEST LOGLIKELIHOOD IS STILL OBTAINED AND REPLICATED.

![](_page_31_Picture_0.jpeg)

MODEL FIT INFORMATION

Number of Free Parameters

43

Loglikelihood

H0 Value -9310.519 H0 Scaling Correction Factor 1.1612 for MLR

Information Criteria

Akaike (AIC) 18707.038 Bayesian (BIC) 18874.020 Sample-Size Adjusted BIC 18737.603 (n\* = (n + 2) / 24)

![](_page_32_Picture_0.jpeg)

## FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

Latent Classes

| 1 | 202 | 0.56267 |
|---|-----|---------|
| 2 | 157 | 0.43733 |

CLASSIFICATION QUALITY

Entropy **0.951** 

![](_page_33_Picture_0.jpeg)

|                | Estimate | S.E.  | Est./S.E. | Two-Tailed<br>P-Value |
|----------------|----------|-------|-----------|-----------------------|
| Latent Class 1 |          |       |           |                       |
| Means          |          |       |           |                       |
| CWALL          | 2.544    | 0.150 | 16.973    | 0.000                 |
| CSTATUS        | 2.174    | 0.130 | 16.749    | 0.000                 |
| CLINKS         | 2.664    | 0.139 | 19.101    | 0.000                 |
| CNOTES         | 1.943    | 0.108 | 18.006    | 0.000                 |
| СРНОТО         | 1.682    | 0.099 | 16.919    | 0.000                 |
| CTOWN          | 2.731    | 0.125 | 21.922    | 0.000                 |
| CLOCCITY       | 2.565    | 0.125 | 20.563    | 0.000                 |
| CLOCSTATE      | 2.818    | 0.131 | 21.429    | 0.000                 |
| CLOCADRESS     | 1.184    | 0.040 | 29.384    | 0.000                 |
| CPHONE         | 1.077    | 0.023 | 46.952    | 0.000                 |
| CEMAIL         | 1.665    | 0.083 | 19.988    | 0.000                 |
| CRELIGIOUS     | 3.565    | 0.143 | 24.942    | 0.000                 |
| CINTEREST      | 3.635    | 0.136 | 26.781    | 0.000                 |
| CGROUPS        | 3,366    | 0.132 | 25,418    | 0.000                 |

![](_page_34_Picture_0.jpeg)

|                | Estimate | S.E.  | Est./S.E. | Two-Tailed<br>P-Value |
|----------------|----------|-------|-----------|-----------------------|
| Latent Class 2 |          |       |           |                       |
| Means          |          |       |           |                       |
| CWALL          | 5.430    | 0.125 | 43.485    | 0.000                 |
| CSTATUS        | 5.527    | 0.119 | 46.282    | 0.000                 |
| CLINKS         | 5.492    | 0.122 | 44.990    | 0.000                 |
| CNOTES         | 4.992    | 0.150 | 33.210    | 0.000                 |
| СРНОТО         | 4.742    | 0.167 | 28.447    | 0.000                 |
| CTOWN          | 5.439    | 0.143 | 38.040    | 0.000                 |
| CLOCCITY       | 5.029    | 0.173 | 29.127    | 0.000                 |
| CLOCSTATE      | 5.246    | 0.162 | 32.480    | 0.000                 |
| CLOCADRESS     | 2.919    | 0.184 | 15.841    | 0.000                 |
| CPHONE         | 2.605    | 0.169 | 15.416    | 0.000                 |
| CEMAIL         | 3.757    | 0.181 | 20.711    | 0.000                 |
| CRELIGIOUS     | 5.117    | 0.133 | 38.471    | 0.000                 |
| CINTEREST      | 5.598    | 0.115 | 48.888    | 0.000                 |
| CGROUPS        | 5.643    | 0.111 | 50,925    | 0.000                 |

![](_page_35_Picture_0.jpeg)

Two classes: one low, one high

What about the 3-class solution?

Change classes = c(3);

To compare against 2 classes, add **output: tech11;** 

Long wait? Add **processors = 4**; (or 8) to make things parallel!

![](_page_36_Picture_0.jpeg)

RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:

| -8980.584 | 761633 | 50  |
|-----------|--------|-----|
| -8980.584 | 414284 | 158 |
| -8980.584 | 860772 | 174 |
| -8980.584 | 544048 | 87  |
| -8980.584 | 479273 | 156 |
| -8980.584 | 576596 | 99  |
| -8980.584 | 804561 | 59  |
| -8980.584 | 286735 | 175 |
| -8980.584 | 458181 | 189 |
| -8980.584 | 939709 | 112 |

THE BEST LOGLIKELIHOOD VALUE HAS BEEN REPLICATED. RERUN WITH AT LEAST TWICE THE RANDOM STARTS TO CHECK THAT THE BEST LOGLIKELIHOOD IS STILL OBTAINED AND REPLICATED.

![](_page_37_Picture_0.jpeg)

MODEL FIT INFORMATION

Number of Free Parameters

58

Loglikelihood

H0 Value -8980.584 H0 Scaling Correction Factor 1.3522 for MLR

Information Criteria

Akaike (AIC) Bayesian (BIC) Sample-Size Adjusted BIC (n\* = (n + 2) / 24) 18077.167 **18302.400** (vs 18874.020) 18118.395

![](_page_38_Picture_0.jpeg)

## FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

Latent Classes

| 1 | 164 | 0.45682 |
|---|-----|---------|
| 2 | 130 | 0.36212 |
| 3 | 65  | 0.18106 |

CLASSIFICATION QUALITY

Entropy

0.957 (vs 0.951)

![](_page_39_Picture_0.jpeg)

|                | Estimate | S.E.  | Est./S.E. | Two-Tailed<br>P-Value |
|----------------|----------|-------|-----------|-----------------------|
| Latent Class 1 |          |       |           |                       |
| Means          |          |       |           |                       |
| CWALL          | 2.258    | 0.142 | 15.914    | 0.000                 |
| CSTATUS        | 1.912    | 0.104 | 18.407    | 0.000                 |
| CLINKS         | 2.354    | 0.126 | 18.729    | 0.000                 |
| CNOTES         | 1.666    | 0.094 | 17.686    | 0.000                 |
| СРНОТО         | 1.443    | 0.082 | 17.694    | 0.000                 |
| CTOWN          | 2.504    | 0.170 | 14.687    | 0.000                 |
| CLOCCITY       | 2.329    | 0.181 | 12.865    | 0.000                 |
| CLOCSTATE      | 2.554    | 0.189 | 13.534    | 0.000                 |
| CLOCADRESS     | 1.158    | 0.049 | 23.444    | 0.000                 |
| CPHONE         | 1.057    | 0.021 | 51.179    | 0.000                 |
| CEMAIL         | 1.580    | 0.086 | 18.291    | 0.000                 |
| CRELIGIOUS     | 3.263    | 0.169 | 19.271    | 0.000                 |
| CINTEREST      | 3.251    | 0.174 | 18.735    | 0.000                 |
| CGROUPS        | 3,002    | 0.156 | 19.236    | 0.000                 |

![](_page_40_Picture_0.jpeg)

|                | Estimate | S.E.  | Est./S.E. | Two-Tailed<br>P-Value |
|----------------|----------|-------|-----------|-----------------------|
| Latent Class 2 |          |       |           |                       |
| Means          |          |       |           |                       |
| CWALL          | 4.956    | 0.227 | 21.812    | 0.000                 |
| CSTATUS        | 4.822    | 0.234 | 20.590    | 0.000                 |
| CLINKS         | 5.069    | 0.195 | 26.048    | 0.000                 |
| CNOTES         | 4.228    | 0.206 | 20.490    | 0.000                 |
| СРНОТО         | 3.931    | 0.217 | 18.133    | 0.000                 |
| CTOWN          | 4.866    | 0.176 | 27.576    | 0.000                 |
| CLOCCITY       | 4.410    | 0.184 | 23.958    | 0.000                 |
| CLOCSTATE      | 4.777    | 0.177 | 26.964    | 0.000                 |
| CLOCADRESS     | 1.610    | 0.112 | 14.410    | 0.000                 |
| CPHONE         | 1.256    | 0.061 | 20.544    | 0.000                 |
| CEMAIL         | 2.593    | 0.169 | 15.306    | 0.000                 |
| CRELIGIOUS     | 5.071    | 0.154 | 32.849    | 0.000                 |
| CINTEREST      | 5.602    | 0.123 | 45.488    | 0.000                 |
| CGROUPS        | 5,558    | 0.149 | 37.411    | 0.000                 |

![](_page_41_Picture_0.jpeg)

|                | Estimate | S.E.  | Est./S.E. | Two-Tailed<br>P-Value |
|----------------|----------|-------|-----------|-----------------------|
| Latent Class 3 |          |       |           |                       |
| Means          |          |       |           |                       |
| CWALL          | 5.448    | 0.192 | 28.360    | 0.000                 |
| CSTATUS        | 5.685    | 0.153 | 37.132    | 0.000                 |
| CLINKS         | 5.503    | 0.169 | 32.637    | 0.000                 |
| CNOTES         | 5.485    | 0.171 | 32.039    | 0.000                 |
| СРНОТО         | 5.227    | 0.195 | 26.799    | 0.000                 |
| CTOWN          | 5.612    | 0.174 | 32.202    | 0.000                 |
| CLOCCITY       | 5.460    | 0.171 | 31.937    | 0.000                 |
| CLOCSTATE      | 5.465    | 0.181 | 30.173    | 0.000                 |
| CLOCADRESS     | 4.649    | 0.280 | 16.609    | 0.000                 |
| CPHONE         | 4.523    | 0.200 | 22.666    | 0.000                 |
| CEMAIL         | 5.133    | 0.154 | 33.375    | 0.000                 |
| CRELIGIOUS     | 5.079    | 0.192 | 26.492    | 0.000                 |
| CINTEREST      | 5.428    | 0.193 | 28.064    | 0.000                 |
| CGROUPS        | 5,421    | 0.147 | 36.846    | 0.000                 |

![](_page_42_Picture_0.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_43_Picture_0.jpeg)

VUONG-LO-MENDELL-RUBIN LIKELIHOOD RATIO TEST FOR 2 (H0) VERSUS 3 CLASSES

| H0 Loglikelihood Value                 | -9310.519 |
|----------------------------------------|-----------|
| 2 Times the Loglikelihood Difference   | 659.870   |
| Difference in the Number of Parameters | 15        |
| Mean                                   | 186.543   |
| Standard Deviation                     | 211.597   |
| P-Value                                | 0.0326    |

#### LO-MENDELL-RUBIN ADJUSTED LRT TEST

| Value   | 652.477 |
|---------|---------|
| P-Value | 0.0339  |

![](_page_44_Picture_0.jpeg)

WHAT IF WE TRIED MORE CLUSTERS?

![](_page_45_Picture_0.jpeg)

MODEL FIT INFORMATION

Number of Free Parameters

73

Loglikelihood

H0 Value -8745.883 H0 Scaling Correction Factor 1.3460 for MLR

Information Criteria

Akaike (AIC) Bayesian (BIC) Sample-Size Adjusted BIC (n\* = (n + 2) / 24) 17637.766 **17921.249** (vs 18302.400) 17689.657

![](_page_46_Picture_0.jpeg)

## FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

Latent Classes

| 1 | 107 | 0.29805 |
|---|-----|---------|
| 2 | 69  | 0.19220 |
| 3 | 124 | 0.34540 |
| 4 | 59  | 0.16435 |

#### CLASSIFICATION QUALITY

Entropy **0.929** (vs 0.957)

![](_page_47_Picture_0.jpeg)

![](_page_47_Figure_1.jpeg)

![](_page_48_Picture_0.jpeg)

VUONG-LO-MENDELL-RUBIN LIKELIHOOD RATIO TEST FOR 3 (H0) VERSUS 4 CLASSES

| H0 Loglikelihood Value                 | -8980.584 |
|----------------------------------------|-----------|
| 2 Times the Loglikelihood Difference   | 469.401   |
| Difference in the Number of Parameters | 15        |
| Mean                                   | 43.297    |
| Standard Deviation                     | 229.372   |
| P-Value                                | 0.0316    |

LO-MENDELL-RUBIN ADJUSTED LRT TEST

| Value   | 464.142 |
|---------|---------|
| P-Value | 0.0333  |

![](_page_49_Picture_0.jpeg)

WHAT IF WE TRIED MORE CLUSTERS?

![](_page_50_Picture_0.jpeg)

MODEL FIT INFORMATION

Number of Free Parameters

88

Loglikelihood

H0 Value -8607.884 H0 Scaling Correction Factor 1.5979 for MLR

Information Criteria

Akaike (AIC) Bayesian (BIC) Sample-Size Adjusted BIC (n\* = (n + 2) / 24) 17391.768 **17733.500** (vs 17921.249) 17454.320

![](_page_51_Picture_0.jpeg)

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

Latent Classes

| 1 | 78  | 0.21727 |
|---|-----|---------|
| 2 | 109 | 0.30362 |
| 3 | 51  | 0.14206 |
| 4 | 57  | 0.15877 |
| 5 | 64  | 0.17827 |

CLASSIFICATION QUALITY

Entropy

**0.940** (vs 0.929)

![](_page_52_Picture_0.jpeg)

VUONG-LO-MENDELL-RUBIN LIKELIHOOD RATIO TEST FOR 4 (H0) VERSUS 5 CLASSES

| -8745.883 |
|-----------|
| 275.999   |
| 15        |
| 733.767   |
| 830.221   |
| 0.7093    |
|           |

LO-MENDELL-RUBIN ADJUSTED LRT TEST

| Value   | 272.906 |
|---------|---------|
| P-Value | 0.7106  |

![](_page_53_Picture_0.jpeg)

### Balance the following criteria

- Minimum of BIC
- Maximum entropy
- Loglikelihood levels off
- p-value of successor > .05 (use Lo-Mendell-Rubin adjusted LRT test, available in output: tech11)
- Solution makes sense

![](_page_54_Picture_0.jpeg)

![](_page_55_Picture_0.jpeg)

## Under VARIABLE:

Specify the number of classes: classes = c(2)

## Under ANALYSIS:

Specify mixture model: type = mixture

Optionally, specify iterations etc (often needed!)

Under MODEL:

Add %overall% and then the factor model

Prepare to wait :-)

![](_page_56_Picture_0.jpeg)

```
usev are
        cwall cstatus clinks cnotes cphoto ctown
        cloccity clocstate clocadress
        cphone cemail creligious
        cinterest cgroups
    ;
    classes = c(2);
analysis:
    type = mixture;
    starts = 400 20;
    stiter = 40;
    processors = 8;
model:
    %overall%
    activity BY cwall cstatus clinks cnotes cphoto;
    location BY ctown cloccity clocstate;
    contact BY clocadress cphone cemail;
    prefs BY creligious cinterest cgroups;
```

![](_page_57_Picture_0.jpeg)

### Balance the following criteria

- Minimum of BIC
- Maximum entropy
- Loglikelihood levels off
- p-value of successor > .05 (use Lo-Mendell-Rubin adjusted LRT test, available in output: tech11)
- Solution makes sense

![](_page_58_Picture_0.jpeg)

#### Table 9

A comparison of the fit of MFA models with different numbers of classes.

|                        | BIC                     | Entropy        | LL                       | # of par. | <i>p</i> -Value       |
|------------------------|-------------------------|----------------|--------------------------|-----------|-----------------------|
| 1 class<br>2 classes   | 16,837<br>16,578        | 0.973          | - 8277.147<br>- 8133.179 | 48<br>53  | 0.0069                |
| 3 classes              | 16,442                  | 0.998          | -8050.552                | 58        | 0.0002                |
| 4 classes<br>5 classes | 16,468<br>16,482        | 0.998<br>0.878 | - 8048.736<br>- 8041.459 | 63<br>68  | <b>0.407</b><br>0.999 |
| 6 classes<br>7 classes | <b>16,351</b><br>16,359 | 0.897<br>0.852 | - 7960.902<br>- 7950.412 | 73<br>78  | 0.812<br>0.893        |

The bold values are mentioned in the text as indicators of the optimal number of dimensions.

![](_page_58_Figure_5.jpeg)

Fig. 8. Change in loglikelihood between subsequent MFA models.

![](_page_59_Picture_0.jpeg)

![](_page_59_Figure_1.jpeg)

![](_page_60_Picture_0.jpeg)

![](_page_60_Figure_1.jpeg)

![](_page_61_Picture_0.jpeg)

### Papers:

Knijnenburg et al. (2012): "Dimensionality of information disclosure behavior", *IJHCS 71 - bit.ly/privdim* 

Wisniewski et al. (2016): "Making privacy personal: Profiling social network users to inform privacy education and nudging", *IJHCS 98 - bit.ly/ijhcs2016* 

## "It is the mark of a truly intelligent person to be moved by statistics."

## 

George Bernard Shaw